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Abstract  

The uniqueness  o f  the electromagnetic energy m o m e n t u m  tensor is established under  
general condit ions.  

1. Introduction 

In electromagnetic field theory and in general relativity the role played by 
the electromagnetic energy momentum tensort 

V ii = - F i h F ]  h + ¼j i (FabFab ) (1.1) 

where~ 

Fij = ~i,] - @,i  (1.2) 

and ~i is an arbitrary vector field, is well known. Some of the more important 
properties which T i /enjoys  are 

(a) T i] is symmetric, i.3. 

r ii = Tli;  (1.3) 

(b) whenever the source-free MaxwelI equations § 

Flit] = 0 ( 1 . 4 )  

-~ Latin indices run  from 1 to n. gi] is the  metric o f  an n-dimensional  Riemannian  
space. The summat ion  convent ion is used throughout .  

$ A comma  denotes  partial differentiation. 
§ A vertical bar denotes  covariant differentiation. The second set o f  Maxwell 's  

equat ions f i i l k  + FM 1] + f]kl i  = 0 are identically satisfied by virtue o f  (1.2). 
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are satisfied, the divergence of Tit i.e. Ttit], vanishes by virtue of the 
identity 

TiJti = FihFhJ li ; (1.5) 

(c) T ij is trace-free in four dimensions, i.e. 

gq T # = 0 for n = 4. (1.6) 
Guided by the properties (1.3) and (1.5) the present work is devoted to 

establishing that in n-dimensions TiJ given by (1.1) is essentially the unique 
sotution to the following problem. To find all tensors Bii for which 

O) BiJ is a concomitant of gab , ~a and ~a,b, i.e. 

BiJ = Bil (gab ; ~a ; ~ ~ b); (1.7) 

(ii) B ij is symmetric, i.e. 

B~J = BS; (1.8) 

(iii) Bill j  vanishes  whenever (1.4) is valid in the sense thatt  

Bql i = aihFh/1:. (I .9) 

where a ih is a tensor and a concomitant of gab , ~a and ~]a,b, i .e.  

aih = aih(gaa ; ~a ; t~a, b ). (1.10) 

Alternative conditions under which T i] is determined uniquely have been 
discussed by Fock (1964, p. 411) and Collinson (1969). 

2. The Uniqueness o f  the Electromagnetic Energy Momentum Tensor 

In this section we shall find all tensors BiJ which satisfy (1.7), (1.8) and (1.9). 
In view of the fact that B q and cJ h are tensor concomitants certain 

invariance identities must be satisfied (Rund, 1966), viz. 

OBii OB q 
--+ ' = 0 ,  (2.1) 

OB lm OB tm OB lm 
8 l R s m  , e m n l s  r-- "vorz~ + 2 -;------grk + - -  ~r + Frl¢=O, (2.2) 

ogs~ a~s 

Ooj/ 8aiJ 
- -  + - = 0 ,  ( 2 . 3 )  

and 

1 m om Is OOJm ootlm ~o~lm 
8rag +o r a +28-~-Tsgrk + ' f f ~ - 7 ~ r + - - F r t c = 0 ,  8~s,k 

t Clearly (1.7) guarantees that Bi]tj is at worst linear in FiLk. 

(2.4) 
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Written out in detail, (1.9) reads 
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aBe~ OBiJ aBiJ 
a~l a, b ~a,b: + ~ a  ~a,j + O~ab gab, j + piajBa] + P~iB i~ 

- -  i h  "k - ~ g [~h, ki -- ~k,h/-- P&Fak -- rg .Fh . ] .  

Differentiation of (2.5) with respect to ~r, st yields 

(2.5) 

1 { ~B it 

while differentiation of  (2.5) with respect to &s, r gives 

OB it 
- -  + ½gJsBrt + ½girBst _ }.gitBrs + ½g~SB it 
agrs 

= ½offF ts + ~%eiaF tr + ½oJkF'kg rt + ½oeixFrkgSt -- ½oJkFtxgrS. (2.7) 

If (2.6) and (2.7) are substituted in (2.5) we see that 

8BiJ ag,a g,a,: = 0. (2.8) 

Consequently (2.6), (2.7) and (2.8) are equivalent to (2.5). 
Differentiation of  (2.8) with respect to ~r,s yields 

a 2 Bii ~B is 

~)~r,s O~a ~a,j + ~ = 0.  (2.9) 

By virtue of  (2.1), (2.9) implies that 

OB is OB ir 
- - +  
a ~  57~, = ° '  

from which, in view of  (1.8), it is easily established that 

aB is 
- 0  

i.e. BiS = Bis (gab ; ~a,b )- (2.10) 

We now turn to an analysis of  (2.6). In (2.6) we interchange i with s, and 
also i with t to f'md 

2 \a~r,i a~,t] 
(2.11) 
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1 [OB it + OBtSt = ~xtrgSi - ½o~tsgri - ½atig~S 

\~l~lr, s ~ l r ,  i]  

respectively'. Adding (2.6) and (2.11) and subtracting (2.12), we see that 

(2.12) 

where 

~B is 
_ _  = airg~t _ Disgrt + ½(o~ti _ ait)grS + odr gir 
~O~,t 

+ ½( ~ , .  _ o : , ) g a  _ ~ . g . i  (2.I3) 

where 

_ ojr;abgSt + O~ti;abgrs + asr;abgi t  + ~ts;abgri  + o~rt;abgSi 

(2.19) 

Oj r;ab = oozir/O~/ a, b • (2.20) 

DiS = ½(a is + d i ) .  

In (2.13) we interchange r and t and make use of (2.1) to find 

Dirg ~t + D i t g  rs + Drsg  it + D S t g  ri - 2DiSg rt  - 2Dr tg  is = O. (2.t4) 

Multiplication of (2.14) by g& yields 

(n - 2 )D st + gSt(girDir ) = O, (2.15) 

from which, for n 4= 2, it follows that 

D st = 0 

i.e. ast  = _ a t s .  (2.16) 

Restricting our considerations to the case n ~> 3, we see that, in view of (2.16), 
(2.13) reduces to 

OB is 
- otirg s t  + o~tig rs + o : r ~  t + ottSg ri + otrtg M ( 2 . 17 )  

~ , t  

If we multiply (2.17) by & i  we see that 

bBi s 
- (n -- 1 )a  ts, 

~ i , t  

which, by virtue of (2.10), implies that 

atS = atS(gab ; ~a,b ). (2.18) 

We now differentiate (2.17) with respect to ~a,b and find 

~2Bis  

~ a , ~  ~ , t  
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From (2.3) and (2.I6)we dearly have 
oLir; ab = _oLri; ab = _o~ir; ba , 

The equation obtained from (2.19) by interchanging a with r and b with t is 
subtracted from (2.19) to give 
dr ;ab  g ~t + oeti;ab g ys + O~r;ab~ t + ogts;ab g yi + OZrt;ab g si 

= o ja;r tg  sb + olbi;rtg as + OLsa;rtg ib + olbs;rtg ai + oflb;rtg M (2.2t)  

We multiply (2.21) by &t and let 

1 dbr = otbs;rtgst 

to find 

( t i -  1)02 ir;ab +o ja ;br  +o~bi;ar +otab;ir=Ijbrgia --ldarg jb.  (2.22) 

Multiplication of (2.22) by gib thus yields 

/ara = uar. (2.23) 

Multiplication of (2.22) by grt~, account being taken of (2.23), gives rise to 

l~ar = )~ar  (2.24) 

where 

X= _1 (gijfJj)=X(ga~;~,a,h) 
n 

(2.25) 

in view of (2.18). 
When (2.24) is substituted in (2.22) we find 

(n -- 1)~ ir;ab + ~ia;br + ~bi;ar + cxab;ir= X(gbrgia _ gargib) .  (2.26) 

In (2.26) we cycle on abi to find 

½(n - 1) [~ir;a~ + ~ar;bi + abr;ia] + [~ia;~r + ~ai;ar + ~ab;ir] = O. (2.27) 

We subtract (2.27) from (2.26) and see that 

½(n - 1)[2~ ir;ab - ~ar;bi _ abr;ia] = X(gbrgia _ gar g ib ) .  (2.28) 

The equation obtained from (2.28) by interchanging a with i is added to (2.28) 
to yield 

(n - 1 ) (~  ir;ab + ~ar;ib) = ?,(2gOrgai _ gargib _ girgab). (2.29) 

The equation obtained from (2.29) by interchanging i with r is subtracted from 
(2.29) to give 

½(n - 1)[2~ ir;ab + ~ar;ib + ~ai;br] =,3,(g~rgai _ gargbi). (2.30) 

A comparison of (2.28) and (2.30) thus shows that 

o,. i;  b~ = o?~; , , i ,  
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which, when substituted in (2.27), yields 

(t'l + 2)(0~ ir;ab + Oe ar;bi + Oe br;ia) = O. 

(2.31) is now substituted in (2.26) and gives rise to 

ojr;ab - X (gbrgai gargib)  
--~-1--1 

We differentiate (2.32) with respect to ffc, a and note (2.20) to find 

OX ~X 
(. br ai ar i b x _  (gdrgci "g g - g  g ) - ~ , b  --g~g*~)" 

~t~ e, ct 

Multiplication of the latter by gaigrb yields 

3X 
(n - 2)(n + 1) ~ = O, 

oW~.a 

so that, by (2.25) 

in which case (Lovelock, 1969) 

X = X(ga~) 

X = ( n -  1)a 

where a is a constant. 
Substitution of (2.33) in (2.32) and integration yields 

ojr  = aFir  + ~ir 

where/jr is an antisymmetric tensor and, by (2.18), 
~ir  = f r ( g a b ) .  

Thus, for n > 2 (Lovelock, I969) 

3 ir = O, 

in which case (2.34) reduces to 
al r = a F  it. 

We now multiply (2.7) b y g r s  and use (2.35) to fred 

~g--Tg.~ = ~ g ~  - 1 + -  e i ,  + (4  - n ) F ~ F ~ .  

where 
B = g i t B  it. 

Also from (2.17) and (2.35) we have 

OB it 
- -  Frs = a (gi tFabFa~ - 4 F i r F t r ) .  

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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However, from (2.2) and (2.10), 

• ~B it I OB it 

Bi t  Ogrs grs 2 3~r.s Frs , 

which, by (2.36) and (2.37) reduces to 

However, from (2.17) and (2.35), we see that 

0B 
- a(4 - n ) F  tr, 

~ G , t  

from which it can be shown that 

B =  - a  1 -  F Ftr  + nb (2.39) 

where b is a constant. Substitution o f  (2.39) in (2.38) gives 

B it = ~ r b  + a [~gitFebFeb -- FirFtr] .  

We have thus proved the 

(2.40) 

Theorem: For n > 2 the only tensor which satisfies (1,7), (1.8) and (1.9) is 

B it = aT it + bg it 

where a and b are constants. 
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