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Abstract

The uniqueness of the electromagnetic energy momentum tensor is established under
general conditions.

1. Introduction

In electromagnetic field theory and in general relativity the role played by
the electromagnetic energy momentum tensorf

T = —F"Fly + 58" FF ) an
where}

Fy=vij—V¥ji (1.2)

and y; is an arbitrary vector field, is well known. Some of the more important
properties which 7% enjoys are

(@) TY is symmetric, i.2.

T4 =77 1.3)
(b) whenever the source-free Maxwell equations §

F7,=0 (1.4).

+ Latin indices run from 1 to 7. gy is the metric of an n-dimensional Riemannian
space. The summation convention is used throughout.

1 A comma denotes partial differentiation.

§ A vertical bar denotes covariant differentiation. The second set of Maxwell’s
equations Fyj | + Frilj + Fjk|i = 0 are identically satisfied by virtue of (1.2).

Copyright © 1974 Plenum Publishing Company Limited. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without
written permission of Plenum Publishing Company Limited.

59



60 DAVID LOVELOCK

are satisfied, the divergence of T% i.e. T (j» vanishes by virtue of the
identity

Tiju:FthhjU; (15)
(¢) TY is trace-free in four dimensions, i..
g;T7=0  forn=4. (1.6)
Guided by the properties (1.3) and (1.5) the present work is devoted to

establishing that in n-dimensions T# given by (1.1) is essentially the unique
solution to the following problem. To find all tensors B% for which

(i) BY is a concomitant of g,p, ¥, and Vg psie.
BY =p" (Eap; Yas \ba, b),', 1.7
(i) BY is symmetric, i.e.

BY = Bit; (1.8)
(iii) BY ij vanishes whenever (1.4) is valid in the sense thatt
BYj=o"F));. (19)
where o/” is a tensor and a concomitant of g,p, ¥, and Vg ps L€
o = o (gup; Yas Va,p). (1.10)

Alternative conditions under which T7 is determined uniquely have been
discussed by Fock (1964, p. 411) and Collinson (1969).

2. The Unigueness of the Electromagnetic Energy Momentum Tensor

In this section we shall find all tensors B which satisfy (1.7), (1.8) and (1.9).
In view of the fact that BY and o/” are tensor concomitants certam
invariance identities must be satisfied (Rund, 1966), viz.

aBY  aBY
-+
Wrs W,

=0, (2.1)

aBlm aBlm aBlm

SLBS + 8BS +2 ——gy + Y+ Fp =0, 2.2
7 I3 agsk vk aws r a‘//s,k vk ( )

ij p) ij
Qo 97, 2.3)

axbr,s a“’"s,r

and
Lysm 4 gmgls b Yk il daf™

) +68 +2 + + F..=0, 2.4
v [ agsk 8rk aws % 3%,;; rk ( )

1 Clearly (1.7) guarantees that BY i is at worst linear in Fyj k.
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Written out in detail, (1.9) reads

aBY B 88"
W, ‘I/a,b] v, \[ja,] gab it FZ]B‘V + [‘] Bla
a,b

= aihgfk Vn ki — Yini — ThjFax — TkjFnal. (2.5)

Differentiation of (2.5) with respect to ¥, 4, yields

it is
1 (aaf +aaf ) G e bl (2.6)
78 5t

while differentiation of (2.5) with respect to g, , gives

aBnlsrtl‘rst 1 itpr 1 it
+3g°B" +38"B — 3¢''B" + 28"B
0grs
- %ai?‘FtS + %afSFﬂ’ + %akoSkgI‘t + %akorkgSt _ %aikpfkgrs‘ (2.7)
If (2.6) and (2.7) are substituted in (2.5) we see that
aBY
VY,

Consequently (2.6), (2.7) and (2.8) are equivalent to (2.5).
Differentiation of (2.8) with respect to ¥, ¢ yields
2 pif is
Oy 2o, 29)
Wysdy, Y,
By virtue of (2.1}, (2.9) implies that
is ir
0B 8 -0,
a, axps
from which, in view of (1.8), it is easily established that
3 is
Y,
ie. B =B (g1 Va,p)- (2.10)

We now tumn to an analysis of (2.6). In (2.6) we interchange { with s, and
also { with 7 to find

=y, =0. (28)

=0

1 (88” aB

AL LI ¥ S t__ LSt i, 211
ey aw”) g7 — 3’y — oy 210
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and
1 (0B aB*
il 4 trgsz 1 ts i 1 tz rs 2.12
(awr,s awn) ¢ -12)
respectively. Adding (2.6) and (2.11) and subtracting (2.12), we see that
aBi.S‘ .
- 0ilrgs}t _Disgrt + %(atz‘ _ ait)gfs + asrgzt
ad/r, t
(™ — g — ot (2.13)
where

D" =}(@” +a).
In (2.13) we interchange r and t and make use of (2.1) to find
D¢ + DS 4 Dright 4+ pStgh 2Dt _ 2D =0, (2.14)
Multiplication of (2.14) by g;, yields

(n —2)D* +g%(g;,D'") =0, (2.15)
from which, for n # 2, it follows that
D=0
ie. ot = (2.16)

Restricting our considerations to the case n 2> 3, we see that, in view of (2.16),
(2.13) reduces to

3 Bz‘s

5 azrgst + attgl’s + asrgjt + atsgri + artgsi_ (2_17)
"t
If we multiply (2.17) by g,; we see that
3B/ ‘
=(n— e’
5., (n—1)
which, by virtue of (2.10), implies that
o = & (gup Ya,0)- (2.18)
We now differentiate (2.17) with respect to ¥,  and find
9B . ” I
—- azr,abgst +atz,abgrs + a5 abgu‘ +ats,abgrz + o t,abgs
al!"a,b a‘j/;",t ) (219)

where

Otir,'z;zb - aair/aﬂba,b . (2.20)
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From (2.3) and (2.16) we clearly have

rijab ..

ir;ab .. —

o — & ba,

The equation obtained from (2.19) by interchanging @ with r and b with ¢ is
subtracted from (2.19) to give

Oéir;abgst + ati;abgrs + asr;abgit + C{z‘s;azbgri +art;abgyi
;__aia;rtgsb +abi,‘rtgas +asa;rtgib +abs;rtgai +aab;rtg9i' (2'21)
We multiply (2.21) by g., and let

br Olbs; rt

u &5t

to find
(}’l - l)air;ab +aia;br +O_,bi;ar +aab;ir=‘ubrgia . ‘uargib. (2.22)

Multiplication of (2.22) by g;;, thus yields

u =yt (2.23)
Multiplication of (2.22) by g, , account being taken of (2.23), gives rise to
uir =g (2.24)
where
1 ..
Az;(gijui})z )\(gab; wa,h), (2~25)

in view of (2.18).
When (2.24) is substituted in (2.22) we find

(1 — 1)ad5® + &7 4 gbIFar 4 oabiir = ) (gbrgla _ gargidy (3 96
In (2.26) we cycle on abi to find
L — 1)[od759 4 a@73PE 4 gbriia) 4 [qleibr 4 gbiiar 4 qabiir] = 0 (227)
We subtract (2.27) from (2.26) and see that
1n — 1)[2adr58 _ qaribi _ gbriia] = \(gbrgla _ gargdby (3 9g)

The equation obtained from (2.28) by interchanging a with i is added to (2.28)
to yield

(l’l . 1)(air;ab + O(:ar;z‘b) = h(ngrgai _gargib _girgab) (2‘29)

The equation obtained from (2.29) by interchanging i with 7 is subtracted from
(2.29) to give

%(?’i _ 1){2&1'7';(11) + O‘L,ar;ib + aai;br] ___‘;\(gbrgai __gargbi)‘ (2‘30)
A comparison of (2.28) and (2.30) thus shows that

b = abr;az ,
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which, when substituted in (2.27), yields
(n +2)(a1r,ab + o bi +abr xa) 0.

(2.31) is now substituted in (2. 26) and gives rise to
— (gbr ai gargib)'

We differentiate (2.32) with respect to El’c,d and note (2.20) to find

&zr;ab -

broai _ ar iby — dr ci cr id
‘ awc, (g ) awa ( gl )'
Multiplication of the latter by g8, y1elds
n—-2)n+1 =0,
ch d

so that, by (2.25)

A= )\(gab)
in which case (Lovelock, 1969)

A=(m—Da

where ¢ is a constant.
Substitution of (2.33) in (2.32) and integration yields

air = aFir + 6ir

where 7 is an antisymmetric tensor and, by (2.18),
67 = 6Cea).
Thus, for n > 2 (Lovelock, 1969)
ir=q ,
in which case (2.34) reduces to
off = aF",
We now multiply (2.7) by g, and use (2.35) to find

gg;t—gm =4¢"B - (1 + ;’2“—) B+ 52- (4 — n)FF*,
where
B=g;B"
Also from (2.17) and (2.35) we have

—'_MFrs=a(gitFabFab “4FirFtr)-

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(237



THE ELECTROMAGNETIC ENERGY MOMENTUM TENSOR 65
However, from (2.2) and (2.10),
gt OB, 198"
s 0 200,
which, by (2.36) and (2.37) reduces to

. 1 . s :
B''==-gB+q [ig”F“bFab ~~F"Ft,,]. (2.38)
n n
However, from (2.17) and (2.35), we see that
aB
=g(4 — n)F,
a‘;{/r, t ( )
from which it can be shown that
- n e
= —q (l — E)F F. +nb (2.39)

where b is a constant. Substitution of (2.39) in (2.38) gives

B =g'"b +q[kg""F°F .y, — F7F,]. (2.40)
We have thus proved the

Theorem: Forn > 2 the only tensor which satisfies (1,7), (1.8) and (1.9)is
Bit =[1Tit +bgft

where a and b are constants.
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